Pressureless Euler/Euler-Poisson Systems via Adhesion Dynamics and Scalar Conservation Laws

نویسندگان

  • Truyen Nguyen
  • Adrian Tudorascu
چکیده

The “sticky particles” model at the discrete level is employed to obtain global solutions for a class of systems of conservation laws among which lie the pressureless Euler and the pressureless attractive/repulsive Euler-Poisson system with zero background charge. We consider the case of finite, nonnegative initial Borel measures with finite second-order moment, along with continuous initial velocities of at most quadratic growth and finite energy. We prove the time regularity of the solution for the pressureless Euler system and obtain that the velocity satisfies the Oleinik entropy condition, which leads to a partial result on uniqueness. Our approach is motivated by earlier work of Brenier and Grenier who showed that one dimensional conservation laws with special initial conditions and fluxes are appropriate for studying the pressureless Euler system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. A P ] 7 A pr 2 00 5 Quasi - neutral limit of the Euler - Poisson and Euler - Monge - Amp è re systems

This paper studies the pressureless Euler-Poisson system and its fully non-linear counterpart , the Euler-Monge-Ampère system, where the fully non-linear Monge-Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of b...

متن کامل

Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems

This paper studies the pressureless Euler-Poisson system and its fully non-linear counterpart, the Euler-Monge-Ampère system, where the fully non-linear Monge-Ampère equation substitutes for the linear Poisson equation. While the first is a model of plasma physics, the second is derived as a geometric approximation to the Euler incompressible equations. Using energy estimates, convergence of bo...

متن کامل

Euler-Lagrange change of variables in conservation laws

We introduce a new method for studying the Cauchy problem for systems of conservation laws in one space dimension. This method is based on the equivalence of the Cauchy problems in Eulerian and Lagrangian coordinates, as regards the existence and uniqueness of entropy solutions. The main idea is to solve the problem in Lagrangian coordinates and determine the transformation linking the two coor...

متن کامل

Constraint Preserving Schemes Using Potential-based Fluxes. Ii. Genuinely Multi-dimensional Central Schemes for Systems of Conservation Laws

We propose an alternative framework for designing genuinely multi-dimensional (GMD) finite volume schemes for systems of conservation laws in two space dimensions. The approach is based on reformulating edge centered numerical fluxes in terms of vertex centered potentials. Any consistent numerical flux can be used to define the potentials. Suitable choices of potentials result in schemes that p...

متن کامل

Entropy Flux - Splittings

A general framework is proposed for the derivation and analysis of ux-splittings and the corresponding ux-splitting schemes for systems of conservation laws endowed with a strictly convex entropy. The approach leads to several new properties of the existing ux-splittings and to a method for the construction of entropy ux-splittings for general situations. A large family of genuine entropy ux-sp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2008